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Abstract

Reconsideration-proof equilibrium is a refinement proposed by Kocherlakota [1996] of sub-

game perfect equilibrium that applies to infinite horizon settings in which time inconsistency is

important. A procedure for computing such equilibria is provided. The procedure is applicable

under an assumption about time-separability of the utility function. The class of problems that

satisfy the assumption includes four of the five examples in Kocherlakota [1996].

1 Introduction

Reconsideration-proof equilibrium is a refinement proposed by Kocherlakota [1996] of subgame

perfect equilibrium that applies to infinite horizon settings in which time inconsistency is important.

To be reconsideration-proof, a strategy must satisfy three properties. First, it must be subgame-

perfect. Second, it must have the same continuation value at any histories. Let us call such

strategies weakly reconsideration-proof. Accordingly, a continuation value is attached to each

weakly reconsideration-proof strategy. Lastly, the strategy must have the highest continuation

value among all the weakly reconsideration-proof strategies.

It is not easy to find reconsideration-proof strategies. Though Kocherlakota [1996] provides a

characterization of weakly reconsideration-proof strategies, it does not tell us much about how to
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find them. The di�culty in finding reconsideration-proof equilibrium contrasts with that in finding

subgame perfect equilibrium, for which the computation algorithm suggested by Abreu et al. [1990]

is available.

This paper provides a computation procedure which is applicable under an assumption about

time separability of the utility function. The class of problems that satisfy the assumption includes

four of the five examples in Kocherlakota [1996].

2 Environment

Time is discrete, and indexed by t. There is an infinitely lived player.

In each period t, there are two subperiods. In the first subperiod, a state variable zt 2 Z is

determined, where Z is a set of states. In the second subperiod, knowing the determined value of

the state variable zt, the player chooses an action xt from a set of actions X.

The environment can be thought of as a reduced form of an environment with a large player and

a continuum of agents, as Kocherlakota [1996] showed. The state variable zt is a choice variable

for the continuum of agents. Their choice depends on their expectation about the large player’s

future actions, {x̂s}s�t. Here, the choice by the continuum of agents is summarized by a function:

the state variable zt is determined by

zt = ⇠ ({x̂s}s�t) ,

where ⇠ is a function from X

1 to Z.

The utility of the infinitely lived player in period t is given by

U(zt, {xs}s�t),

where U is a function from X

1 ⇥ Z to R.

Throughout the paper, the following is assumed:

Assumption 1. X is a convex and compact subset of a Hausdor↵ space equipped with topology ⌧ .
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A history is an element of H =
S

t�0X
t, where X

0 = {;}. A strategy � is a mapping from H
to X. A continuation path of �, ��, is a mapping from H to X

1 defined by

��(h) = {�(h),�(hh,�(h)i),�(hh,�(hh,�(h)i)i), ...}

for each h 2 H. A continuation value of �, which is denoted by V

�, is a mapping from H to R

defined by V

�(h) = U(⇠(��(h)),��(h)) for each h 2 H.

3 Solution Concepts and Characterization

3.1 Solution Concepts

First, subgame perfection is defined in the standard way.

Definition 1. A strategy � is subgame-perfect if for any history h, for any x 2 X,

V

�(h) � U(⇠(��(h)), hx,��(hx, hi)i).

Here, since the player at di↵erent histories is modeled as di↵erent decision makers, unilateral

deviations to which subgame perfect strategies should be immune are just deviations in one-period

action.

Reconsideration-proofness is defined in the next two definitions, following Kocherlakota [1996].

Definition 2. A subgame-perfect strategy � is weakly reconsideration-proof if there exists V̄ � 2 R

such that for any h 2 H, V̄ � = V

�(h). Such V̄

� is called the value of the weakly reconsideration-

proof strategy �.

Definition 3. A weakly reconsidration-proof strategy � is strongly reconsideration-proof if for any

weakly reconsideration-proof strategies �0, V̄ � � V̄

�0
.

The weakly reconsideration-proofness requires a necessary condition to be reconsideration-proof.

If the condition failed, that is, if a strategy had two continuation strategies that have di↵erent
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continuation values, then, at the history at which the player was supposed to play the continuation

strategy with a lower value, he would switch to the continuation strategy with a higher value.

Strongly reconsideration-proof strategies are the best among weakly reconsideration-proof strate-

gies. That implies, if a strategy achieves a higher continuation value at a history, then it is not

weakly reconsideration-proof. The player would not switch from a strongly reconsideration-proof

strategy in a credible way.

3.2 Characterization

Kocherlakota [1996] gives a characterization of weakly reconsideration-proof strategies. To state it,

define

D(V ) = {{xt}t�0|for each t � 0, U(⇠({xs}s�t), {xs}s�t) = V }, and

Z(V ) = {⇠({xt}t�0)|{xt}t�0 2 D(V )}.

Now, the characterization can be stated.

Proposition 1. [Kocherlakota, 1996] There exists a weakly reconsideration-proof strategy with

value V if and only if there exists a subset D⇤ ✓ D(V ) and a subset Z⇤ ✓ Z(V ) such that

1. Z

⇤ = ⇠(D⇤).

2. For all x 2 X and all z 2 Z

⇤, there exists d in D

⇤ such that U(z, x, d)  V .

The characterization does not tell much about how to find such pair of D⇤ and Z

⇤. In the next

section, I specify a subclass of problems and suggest a computation procedure.

4 Class of Problems and Computation Procedure

4.1 Class of Problems

I suggest a procedure for problems that satisfy the following assumption.
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Assumption 2. There exist a constant � and a function u : X2 ! R such that U(zt, {xs}s�t) =

(1� �)
P1

s=t �
s�t

u(xs, xs+1).

Under the assumption, the characterization of weakly reconsideration-proof strategies can be

simplified. The simplified characterization will lead to a procedure. To state it, define

X0(V ) = X,

X1(V ) = {x 2 X|there exists x0 2 X such that u(x, x0) = V },

for each k, Xk+1(V ) = {x 2 X|there exists x0 2 Xk(V ) such that u(x, x0) = V }, and

X (V ) =
1\

k=1

Xk(V ).

The next lemma is useful.

Lemma 1. Under Assumption 2, x 2 X (V ) if and only if there exists {xt}t�0 2 D(V ) such that

x0 = x.

Proof. See Appendix.

Now, the simplified characterization is stated as a proposition.

Proposition 2. Under Assumption 2, there exists a weakly reconsideration-proof strategy with

value V if and only if for all x 2 X, there exists x

0 in X (V ) such that u(x, x0)  V .

Proof. By Proposition 1, it is su�cient to show the equivalence between the following two state-

ments.

1. there exists a subset D⇤ ✓ D(V ) and a subset Z⇤ ✓ Z(V ) such that

(a) Z

⇤ = ⇠(D⇤).

(b) For all x 2 X and all z 2 Z

⇤, there exists d in D

⇤ such that U(z, x, d)  V .

2. for all x 2 X, there exists x0 in X (V ) such that u(x, x0)  V .
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First, since U does not depend on z by Assumption 2, the first statement is equivalent to

for all x 2 X, there exists d 2 D(V ) such that U(x, d)  V.

Next, by the time separability of U , it is equivalent to

for all x 2 X, there exists {xt}t�0 2 D(V )

such that (1� �)u(x, x0) + �U({xt}t�1)  V.

Since for any {xt}t�0 2 D(V ), U({xt}t�1) = V , it is equivalent to

for all x 2 X, there exists {xt}t�0 2 D(V ) such that u(x, x0)  V.

By Lemma 1, it is equivalent to the second statement.

4.2 Computation Procedure

The computation procedure for reconsideration-proof equilibrium is the following:

1. For each V , compute X (V ) by calculating {Xk(V )}k�1.

2. Find the largest V such that for all x 2 X, there exists x0 in X (V ) such that u(x, x0)  V .

Proposition 2 assures that weakly reconsideration-proof strategies achieve the largest V are strongly

reconsideration-proof. In the next section, I apply the procedure for the examples in Kocherlakota

[1996].

5 Examples

There are five examples in Kocherlakota [1996]. Four of them satisfies Assumption 2. In the

following, the procedure is applied to the four examples.
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Example 1. (Example 1 in Kocherlakota [1996]) Let u(x, x0) = x� x

0 and X = [0, 1]. Then,

X1(V ) = {x 2 [0, 1]|there exists x0 2 [0, 1] such that x� x

0 = V }

= {x 2 [0, 1]|x� V 2 [0, 1]}

= [0, 1] \ [V, 1 + V ],

Xk(V ) = {x 2 [0, 1]|there exists x0 2 Xk�1(V ) such that x� x

0 = V }

= {x 2 [0, 1]|x� V 2 Xk�1(V )}

= [0, 1] \
\

k=1

[kV, 1 + kV ],

and

X (V ) =

8
>><

>>:

; for V 6= 0,

[0, 1] for V = 0.

Since if V = 0, for any x 2 X, u(x, x) = 0 = V , the value of reconsideration-proof equilibrium is

V = 0. Any strategies that satisfy for each t � 1, �(ht�1) = h

t�1
t�1 is reconsideration-proof.

Example 2. (Example 2 and 3 in Kocherlakota [1996]) Let u(x, x0) =
p
xx

0 and X = [0, 1]. Note

that V 2 [0, 1]. Then,

X1(V ) = {x 2 [0, 1]|there exists x0 2 [0, 1] such that
p
xx

0 = V }

= {x 2 [0, 1]|px 2 [V,1)}

= [V 2
, 1],

Xk(V ) = {x 2 [0, 1]|there exists x0 2 Xk�1(V ) such that
p
xx

0 = V }

= {x 2 [0, 1]|x� V 2 Xk�1(V )}

= [V 2
, 1],
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and

X (V ) = [V 2
, 1].

Since if V = 1, for any x 2 X, u(x, 1) =
p
x  1 = V , the value of reconsideration-proof equilibrium

is V = 1. The strategy that satisfy for each t � 0, �(ht�1) = 1 is reconsideration-proof.

Example 3. (Example 4 in Kocherlakota [1996]) Let u(x, x0) = x� 2x0 and X = [0, 1]. Then,

X1(V ) = {x 2 [0, 1]|there exists x0 2 [0, 1] such that x� 2x0 = V }

= {x 2 [0, 1]|(x� V )/2 2 [0, 1]}

= [0, 1] \ [V, 2 + V ],

Xk(V ) = {x 2 [0, 1]|there exists x0 2 Xk�1(V ) such that x� 2x0 = V }

= {x 2 [0, 1]|(x� V )/2 2 Xk�1(V )}

= [0, 1] \
\

k=1

[(2k � 1)V, 2k + (2k � 1)V ],

and

X (V ) =

8
>><

>>:

; for V > 0 or V < �1,

[0, 1] for � 1  V  0.

Since for any V 2 [�1, 0], for any x 2 X, u(x, 1)  V , the value of reconsideration-proof equilibrium

is V = 0. Any strategies that satisfy for each t � 1, �(ht�1) = h

t�1
t�1/2 is reconsideration-proof.

Example 4. (The example in Section 5 in Kocherlakota [1996]) Let u(x, x0) = y(x/2+(1�x

0)/(1+

r)), and X = [0, 1]. For a simple exposition, set y = 1. Then,

X1(V )

= {x 2 [0, 1]|there exists x0 2 [0, 1] such that x/2 + (1� x

0)/(1 + r) = V }

= {x 2 [0, 1]|(x/2� V )(1 + r) + 1 2 [0, 1]}

= [0, 1] \ [2(V � 1/(1 + r)), 2V ],
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Xk(V )

= {x 2 [0, 1]|there exists x0 2 Xk�1(V ) such that x/2 + (1� x

0)/(1 + r) = V }

= {x 2 [0, 1]|(x/2� V )/(1 + r) + 1 2 Xk�1(V )}

= [0, 1] \
\

k=1

✓⇣
2

1+r

⌘k � 1

◆
2V (1+r)�1

1�r ,

⇣
2

1+r

⌘k ⇣
1 + 2V (1+r)�1

1�r

⌘
� 2V (1+r)�1

1�r

�
,

and

X (V ) =

8
>><

>>:

; for V >

1
1+r or V <

1
2 ,

[0, 1] for 1
2  V  1

1+r .

For any V 2 [12 ,
1

1+r ], for any x 2 X, u(x, 1) = x/2  V . Therefore, V = 1
1+r is the value of

reconsideration-proof equilibrium.
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Appendix; Proof of Lemma 1

To prove Lemma 1, the following two lemmas are useful.

Lemma 2. For any V 2 R, for each k = 0, 1, ..., Xk(V ) is closed.
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Proof. The proof is by mathematical induction. Since X is compact and Hausdor↵, X is closed.

By definition, X0(V ) is closed. Let k be an arbitrary nonnegative integer. Suppose that Xk(V ) is

closed. If Xk+1(V ) is empty, the desired conclusion immediately follows. Suppose that Xk+1(V )

is nonempty. Take an arbitrary net {xi}i2I in Xk+1(V ) that converges to a point x 2 X, where

I is a directed set. To show that Xk+1(V ) is closed, it is su�cient to prove that x 2 Xk+1(V ).

By definition of Xk+1(V ), for each i 2 I, there exists x

0
i 2 Xk(V ) such that u(xi, x

0
i) = V . Then,

{(xi, x0i)}i2I is a net in X ⇥X. The set X ⇥X is compact with respect to the product topology

by Tychono↵’s theorem. Since X ⇥X is compact, by Theorem 5.2 in Kelley [1975], there exists a

subnet {(xij , x0ij )}j2J of the net {(xi, x0i)}i2I that converges to a point (x̄, x̄0) 2 X ⇥X. Since the

subnet {xij}j2J converges to x and x̄ and X is Hausdor↵, by Theorem 2.3 in Kelley [1975], x = x̄.

Since the subnet {(xij , x0ij )}j2J converges to (x, x̄0) 2 X⇥X, for each j 2 J , u(xij , x
0
ij
) = V , and u

is continuous, it holds that u(x, x̄0) = V . We can show that x̄0 2 Xk(V ) since Xk(V ) is closed and

{x0ij}j2J converges to x̄

0. Therefore, x 2 Xk+1(V ).

Lemma 3. For any V 2 R, for any x 2 X (V ), there exists x

0 2 X (V ) such that u(x, x0) = V .

Proof. Suppose V 2 R. If X (V ) is empty, the conclusion trivially follows. Suppose X (V ) is

nonempty. Let x 2 X (V ). Then, by definition of X (V ), for each i = 1, 2, ..., x 2 Xi(V ). By

definition of Xi(V ), there exists xi 2 X such that u(x, xi) = V . Since X is compact, by Theorem

5.2 in Kelley [1975], the net {xi}i�1 has a convergent subnet {xj}j2J , where J is a directed set.

Let x̄ = limxj . We can show x̄ 2 X (V ) and u(x, x̄) = V as follows. For each k = 1, 2, ..., a subnet

{xj}j2J,j�k is a net in Xk(V ). Since Xk(V ) is a compact set in the Hausdor↵ space X, by Theorem

5.7 in Kelley [1975], Xk(V ) is closed, and thus x̄ 2 Xk(V ). Therefore, x̄ 2 X (V ) =
T1

k=1Xk(V ).

By the continuity of u and Theorem 3.1 in Kelley [1975], u(x, x̄) = V holds.

Now I can prove Lemma 1.

Proof of Lemma 1. (Su�ciency) Suppose there exists {xt}t�0 2 D(V ) such that x0 = x. Then, by

definition of D(V ), for any t � 0, u(xt, xt+1) = V . This implies that for any k � 1, x 2 Xk(V ).

Therefore, x 2 X (V ).
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(Necessity) Suppose x 2 X (V ). By Lemma 3, I can inductively construct a sequence {xt}t�0

such that x0 = x and for each t � 0, u(xt, xt+1) = V and xt+1 2 X (V ). Clearly, {xt}t�0 2
D(V ).
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